PCOG-90: PCORnet Study of Older Persons with Superior Cognitive Performance Over Age 90

DEMETRIUS M. MARAGANORE, MD, FAAN CHAIR, DEPARTMENT OF NEUROLOGY

OVERVIEW

- The over 90 population is rapidly growing, with >50% risk for Alzheimer's disease
- U19 Grant Application (submitted 1/25/22; earliest start date 9/1/22)
 - \$91 Million total budget/5 years (1,732 pp application)
 - 20 participating sites/6 clinical research networks (70 MPIs/co-Is)
 - >150,000 subjects with a computable phenotype of successful aging
 - 5,000 subjects to be enrolled in a prospective study of superior cognitive fitness
- Overarching Aims
 - To mine existing EMR data relating to medical determinants of health, and link those data with newly collected social, cognitive, digital, and biological health data, and to evaluate factors including genetics, epigenetics, metabolism, the gut microbiome, immune function, environment, and lifestyle, to understand how they associate over time with successful cognitive and biological aging across the health span
 - To conduct studies of superior cognitive performance in racially and ethnically diverse (including African American, Caucasian, and Hispanic) and geographically diverse (including rural and urban) aging populations nationwide.

PRELIMINARY STUDIES

OneFlorida Data Trust

- 15 million patients
- 4,100 providers
- 1,240 practices
- 22 hospitals
- 75% of Floridians

https://onefloridaconsortium.org

UF Moonshot UNDERSTANDING RESISTANCE, RESILIENCE, AND REPAIR IN THE HEALTH SPAN (OVER 90 STUDY)

AIMS:

1) Identify informatics-based computable phenotypes that enable identification of individuals over 90 who successfully aged by mining medical & social determinants of health information available within the OneFlorida Data Trust

2) Directly assess both the resources needed to recontact individuals over 90 and the participation rate of those contacted

3) Conduct a pilot study to inform on the feasibility of using computable phenotypes from the OneFlorida Data Trust to identify an over 90 cohort for an intervention aimed at maintaining resilience and independence

SUCCESSFUL AGING COMPUTABLE PHENOTYPE

EMR FEATURES	DE-IDENTIFIED EXPERTS									
	1 2 3 4 5 6 7 8								9	10
Alive, 90 years or older										
No nursing home placement [NOT COMPUTABLE; ZIP CODE AS PROXY]										
No palliative/hospice care										
Low comorbidity index (Charlson, Elixhauser)										
Low healthcare utilization (hospitalizations, ER)										
Free of dementia, Alzheimer's, related disorder										
Free of stroke										
Free of Parkinson's										
Free of other progressive brain disorders										
Free of communication disorder (e.g., aphasia)										
Free of deafferentation										
Free of gait disorder or falls										
Free of depression or related disorders										
Free of major psychiatric disorders										
Free of extremes of BMI (<18.5, >40)										
Free of chronic opiate use/addiction										
Free of home O2 use										
Free of wheelchair/walker prescriptions										
Free of handicap parking permit [NOT COMPUTABLE]										

Green = required Yellow = unsure Red = not required

RESULTS

OneFlorida Clinical Research Consortium

Heat map of Florida nursing home location data by zipcode. Source: https://floridahealthfinder.gov Created by: CTS-IT

*Zip code as proxy for nursing home placement; 20,932 Over 90 patients without a FL zip code

Characteristics	Over 90		Over 90 Non-Demented		Over 90 Non-Demented No Nursing Home*		Ove Succe Agi (all para	r 90 essful ing imeters)
	Ν	%	Ν	%	Ν	%	Ν	%
Total	281,927		187,514	66.5%	65,008	23.1%	45,710	16.2%
Demographic								
Sex								
Female	187,092	66.4%	116,405	62.1%	41,097	63.2%	28,276	61.9%
Male	91,511	32.5%	67,831	36.2%	23,618	36.3%	17,158	37.5%
Unknown	3,324	1.2%	3,278	1.7%	293	0.5%	276	0.6%
Race								
White	155,689	55.2%	97,549	52.0%	32,845	50.5%	20,687	45.3%
African American	26,356	9.3%	15,728	8.4%	5,528	8.5%	3,816	8.3%
American Indian	311	0.1%	206	0.1%	64	0.1%	34	0.1%
Asian	2,847	1.0%	1,936	1.0%	775	1.2%	484	1.1%
Pacific Islander	112	0.0%	89	0.0%	44	0.1%	33	0.1%
Multi-race	2,330	0.8%	1,787	1.0%	637	1.0%	433	0.9%
Other	53,420	18.9%	33,676	18.0%	13,747	21.1%	10,515	23.0%
Unknown	40,862	14.5%	36,543	19.5%	11,368	17.5%	9,708	21.2%
Ethnicity								
Hispanic	51,115	18.1%	32,401	17.3%	14,074	21.6%	10,009	21.9%
Non-Hispanic	172,279	61.1%	106,301	56.7%	35,529	54.7%	22,712	49.7%
Unknown	58,533	20.8%	48,812	26.0%	15,405	23.7%	12,989	28.4%

U19 GRANT APPLICATION (NIA)

SIGNIFICANCE: HUNDREDS OF THOUSANDS OF COGNITIVELY FIT NONAGENARIANS!

INNOVATION: LEVERAGING A NATIONAL NETWORK OF EMR REGISTRIES!

- 9 Networks (*6 participating)
- Coordinating Center (Duke)
- 65 Healthcare Institutions/20 Participating
- >66 million people

*

Table 1: Baseline Character	istics of Patients /	Aged 90 or O	Ider from Janua	ary 1, 2012 to I	December 31, 2	2019			
	All patients with any diagnosis over the age of 90 ^C		All patients diagnosis over without d	with any the age of 90 ementia	All patients diagnosis over without demer a nursing	s with any the age of 90 ntia and not in g home	All patients with any diagnosis over the age of 90 who are sucessful agers ^{\$}		
	N Mean	% SD	N Mean	% SD	N Mean	% SD	N Mean	% SD	
Number of Unique Patients ¹	652,016		470,605		452,824		267,382		
Demographics									
Age									
Mean age	91.6	2.5	91.7	2.5	91.7	2.5	91.9	2.6	
Sex									
Female	430,977	66%	303,311	64%	291,096	64%	169,930	64%	
Male	220,688	34%	166,963	35%	161,399	36%	97,156	36%	
Other/Missing ²	351	0%	331	0%	329	0%	296	0%	
Race									
Asian	9,016	1%	6,356	1%	6,241	1%	3,893	1%	
Black or African American	51,028	8%	32,059	7%	30,966	7%	17,976	7%	
White	483,760	74%	344,127	73%	328,616	73%	177,602	66%	
Other/Missing ²	108,212	17%	88063	19%	87,001	19%	67,895	25%	
Hispanic									
Yes	28,681	4%	18,713	4%	18,382	4%	10,833	4%	
No	527,053	81%	370,791	79%	354,888	78%	193,080	72%	
Other/Missing ²	96,282	15%	81,101	17%	79,554	18%	63,459	24%	
Year of Index Event									
2012	97,940	15%	62,423	13%	59,433	13%	32,261	12%	
2013	71,500	11%	49,304	10%	46,370	10%	26,902	10%	
2014	72,847	11%	50,948	11%	48,768	11%	28,589	11%	
2015	75,363	12%	54,110	11%	51,921	11%	30,745	11%	
2016	79,191	12%	57,468	12%	55,435	12%	32,952	12%	
2017	81,983	13%	60,743	13%	58,807	13%	34,580	13%	
2018	83,602	13%	64,058	14%	62,216	14%	37,136	14%	
2019	89,590	14%	71.551	15%	69.874	15%	44.217	17%	

PCOG-90 Participating Sites [154,144 subjects with computable phenotype of successful aging]

154,144 "successfully aged" 90+ year old's 5,000 subjects enrolled (half Black or Hispanic)

PCOG 90

ADMINISTRATIVE/COORDINATING CORE

(TULANE*/LPHI/20 Participating Sites)

BIOMEDICAL INFORMATICS CORE (DUKE/FLORIDA*/LPHI) RECRUITMENT/RETENTION CORE (NYU*) CLINICAL CORE (FLORIDA*/UNC) BIOSPECIMENS CORE (TULANE*)

PROJECT 1: MOLECULAR ARCHITECTURE OF COGNITIVELY SUPERIOR OLDER ADULTS (TULANE*/FLORIDA)

PROJECT 2: MEDICAL AND SOCIAL DETERMINANTS OF COGNITIVE HEALTH LATE IN LIFE (FLORIDA*/TULANE/UNC)

PROJECT 3: DIETARY PATTERNS, WEIGHT HISTORY, AND MICROBIOTA DETERMINANTS OF COGNITIVE HEALTH LATE IN LIFE (FLORIDA*/NYU/UNC)

> PROJECT 4: DETERMINING COGNITIVE HEALTH LATE IN LIFE THROUGH DYNAMIC BIOMARKERS (DUKE*/INTERMOUNTAIN)

MPI Plan

Cores	Core MPIs (* denotes contact PI)
Administrative and Coordinating	Demetrius Maraganore (Tulane University)*
	Thomas Carton (Louisiana Public Health Institute)
	S. Michal Jazwinski (Tulane University)
Biomedical Informatics	Jiang Bian (University of Florida)*
	Thomas Carton (Louisiana Public Health Institute)
	Sheng Luo (Duke University)
Recruitment and Retention	Joshua Chodosh (New York University)*
Clinical	Glenn Smith (University of Florida)*
	John Batsis (University of North Carolina)
Biospecimens	Shanker Japa (Tulane University)*

Projects	Project MPIs (* denotes contact PI)
Molecular Architecture of Cognitively Superior Older Adults	S. Michal Jazwisnski (Tulane University)* Matthew Farrer (University of Florida) Sangkyu Kim (Tulane University)
Medical and Social Determinants of Cognitive Health Late in Life: A Health Outcomes and Biomedical Informatics Approach	Yongui Wu (University of Florida)* Jan Busby-Whitehead (University of North Carolina) Demetrius Maraganore (Tulane University) Elizabeth Shenkman (University of Florida)
Dietary Patterns, Weight History, and Microbiota Determinants of Cognitive Health Late in Life	Wendy Dahl (University of Florida)* Andrea Azcarate-Peril (University of North Carolina) Jeanette Beasley (New York University)
Determining Cognitive Health Late in Life Through Dynamic Biomarkers	Heather Whitson (Duke University)* Benjamin Horne (Intermountain Healthcare)

Participating Sites	Site PIs
Baylor Scott and White Health	Jinmyoung Cho
Duke University	Rowena Dolor
Intermountain Healthcare	Benjamin Horne
Johns Hopkins University	Joseph Gallo
Mount Sinai School of Medicine	Mary Sano
New York University	Joshua Chodosh
Penn State University	Cynthia Chuang
Temple University	Anuradha Paranjape
Tulane University	Demetrius Maraganore
Vanderbilt University	Katherine Gifford
University of Florida	Stephen Anton
University of Iowa	Ryan Carnahan
University of Michigan	Raymond Yung
University of Missouri	Blaine Reeder
University of Nebraska	Al Fisher
University of North Carolina	Jan Busby-Whitehead
University of Pittsburgh	Richard Boyce
University of Texas Southwestern	Laura Lacritz
University of Utah	Karen Schliep
Weill Cornell Medicine	Kellyann Niotis

Overall

TARGETED/PLANNED ENROLLMENT: Number of Subjects								
Ethnic Category	Females	Females Males						
Hispanic or Latino	834	416	1,250					
Not Hispanic or Latino	2,500 1,250 3,7							
Ethnic Category: Total of All Subjects *	3,334	1,666	5,000					
Racial Categories								
American Indian/Alaska Native	34	16	50					
Asian	67	33	100					
Native Hawaiian or Other Pacific Islander	17	8	25					
Black or African American	834	416	1,250					
White	2,384	1,191	3,575					
Racial Categories: Total of All Subjects *	3,336	1,664	5,000					

Half of the subjects will be Black or African American, or Hispanic or Latino

Time interval (months)	0-6	7-12	13-18	19-24	25-30	31-36	37-42	43-48	49-54	55-60
Set up (IRB, training, database, materials)										
Computable phenotype										
Clinical assessments (first)										
Biospecimens collection (first)										
Clinical assessments (second)										
Biospecimens collection (second)										
Clinical assessments (third)										
Biospecimens collection (third)										
Data cleaning and analyses										

Biomedical Informatics Core

Recruitment and Retention Core

Figure 1. PCOG Sites (20) Within Six US Regions

Table 1. GOSCE* Communication Checklist
 Communicated concern or intention to help
 Non-Verbal Behavior-communication (e.g. eye contact, posture)
 Acknowledged emotions/feelings appropriately
 Was accepting/non-judgmental
 Used words you understood and/or explained jargon
 Asked questions to see what you understood
 Provided clear explanations/information
 Collaborated with you to identify / decide on possible next steps/plan
 Answered or addressed all of my questions/concern
 Took a personal interest in you; treated you as a person
 Allowed you to talk without interrupting
*GOSCE: Group Objective Structured Clinical Exam

Table 2. Timeline (months)	0-6	7-12	13-18	19-24	25-30	31-36	37-42	43-48	49-54	54-60
Develop consent forms: paper-based and electronic										
Develop informatics structure for recruitment, data collection, and retention efforts										
2X Monthly meetings: 20-site research coordinators										
Monthly meetings: biomedical informatics core: track recruitment, retention, biospecimen collection										
Monthly meetings: MPIs of Cores, projects, 20 sites										
Generate library of recruitment materials										
Participants Subcommittee meetings (up to 4) to vet recruitment materials										
 Semi-structured interviews with Participants Subcommittee members and others (n=12) 										
 GOSCE training sessions – new and refresher 										

Clinical Core

Telephone Interview	#1		
Domain	Measure	ltems	Time
Demographic*	DOB, sex, income, race/ethnicity, education, living arrangement, proxy	4	3 min
Neurocognitive			
Cognition*	TICS-M	—	30 min
	Recorded 1-minute story telling	1	
Depression*	Patient Health Questionnaire-8	9	
Anxiety*	Generalized Anxiety Disorder-7	7	
Geriatric Syndromes			
Physical Function*	Katz + Lawton ADLs	13	15min
Sensory [†]	Vision/hearing	2	1 min
	Hearing aids, glasses/contacts	2	1 min
Readiness [†]	Computer Proficiency Question	12	5 min
Proxy-based iADL/AI	DL Assessment		
Daily Function	FAQ (for MCI/dementia cases only)	10	10min
Telephone Interview	#2		
Demographic [†]	Insurance, family history, children	3	3 min
Social Measures			
Health Habits†	Current/past use: tobacco, alcohol, drugs	6	4 min
Home Status†	Partner status, household members, home services, mobility aids, driving	5	4 min
Religious †	Behaviors + attitudes	2	2 min
Social Support [†]	Duke/UNC Functional Social Support	5	3 min
Loneliness†	Loneliness Scale	3	2 min
Self-Reported Physic	al and Health Measures		
Physical Activity†	Baecke Habitual Physical Activity	9	5 min
Nutrition [†]	Self-reported weight, height	2	1 min
	Weight History Questionnaire	4	2 min
	Food Security Scale	6	4 min
	MIND Diet Screener	15	10 min
Quality of Life [†]	PROMIS Global Health 10	10	5 min
Environment [†]	Lifespace Questionnaire	9	4 min
Optimis m†	Life Orientation Test-Revised	10	3 min
Sleep [†]	Insomnia Severity Index	7	5 min
Pain [†]	Brief GSS	3	2 min
Falls [†]	Any falls, falls with injury	3	1 min
Superior Cognition S	ubsample		
Language*	Picture Vocabulary		4 min
Executive Function*	Dimensional Change Card Sort		4 min
Episodic Memory*	Picture Sequence Memory		7 min
Working Memory*	List Sorting Working Memory		7 min
Processing Speed*	Pattern Comparison		3 min

Table. Definiti	ons of Cognitive Performance ^{1,2}		
Classification	Definition	% Estimated	Special Procedures
Superior cognitive performance	Scoring in the top 10% of local site on the TICS-M	10%	NIH Toolbox Cognitive Battery at follow-up
Normal cognitive performance	Scoring <u>above, at, or within</u> 1.0 SD below age, education, gender expectations (means) on TICS-M (but ≤90 th percentile on TICS-M	60%	None
Mild Cognitive Impairment	Scoring more than 1.0 SD <u>below</u> age, education, gender expectations (means) on TICS-M, <u>without</u> significant impairments in ADLs via proxy-based FAQ (score <9).	20%	Proxy-completed FAQ
Dementia	Scoring more than 1.0 SD <u>below</u> age, education, gender expectations (means) on TICS-M, <u>with</u> significant impairments in ADL via proxy-based FAQ (score <u>>9)</u>	10%	Proxy-completed FAQ
Abbroviationa: ADI	ADE via proxy-based I AQ (Score <u>~9)</u>		alth: SD: standard

Abbreviations: ADL: activities of daily living; FAQ: Functional Assessment Questionnaire; NIH: National Institute of Health; SD: standard deviation; TICS-M: Telephone Interview for Cognitive Status Modified. TICSM expectations (means) will be calculated based on Duff et al 2014.

1) Duff K, Shprecher D, Litvan I, Gerstenecker A, Mast B. Correcting for demographic variables on the modified telephone interview for cognitive status. *The American Journal of Geriatric Psychiatry*. 2014;22(12):1438-1443.

2) Negash S, Smith G, Pankratz S, et al. Successful aging: definitions and prediction of longevity and conversion to mild cognitive impairment. *The American Journal of Geriatric Psychiatry*. 2011;19(6):581-588.

Biospecimens Core

Fig. 1: Schematic representation of the planning phase of biospecimen collection.

Table 1: Biospecimens collection, processing, storage, and shipping reference - All Sites.

(Blood specimens will be collected after an overnight fast, prior to physical exercise, between 7 -10 AM)

Tube type & Draw Vol (Assay)	Phlebotomy and Lab Instructions	Shipping conditions
Streck RNA Complete	 Ensure the blood collection tube is at room temperature (15−25 ^oC) prior to use. 	Ambient
BCT, 10 ml x 1	 Mix the filled tube immediately by gently inverting 8-10 times. 	(twice a
(Transcriptomics)	 Store the collected blood tubes upright at room temperature (15-25 °C). Avoid disturbing tubes. 	week)
Paxgene blood DNA	 Mix the filled tube immediately by gently inverting 8-10 times. 	Dry ice
tube, 8.5 ml x 1	• Store tubes upright at room temperature for from 2 to 72 hours before moving to -70 ^o C freezer.	(once a
(Genomics)	Note: Store tubes upright in a wire rack. Do not freeze tubes in a Styrofoam™ tray.	month)
Paxgene blood RNA	 Mix the filled tube immediately by gently inverting 8-10 times. 	Dry ice
tube, 2.5 ml x 4	• Store tubes upright at room temperature for from 2 to 72 hours before moving to -70 ^o C freezer.	(once a
(Transcriptomics)	Note: Store tubes upright in a wire rack. Do not freeze tubes in a Styrofoam™ tray.	month)
Barricor (Heparin)	 Mix the filled tube immediately by gently inverting 8-10 times. 	Dry ice
blood tube, 5.5 ml x 2	• Deliver tubes to the processing lab. Centrifugation should start within 2 hrs. of blood collection.	once a
(Metabolomics)	• To separate the plasma, centrifuge the tubes at 3000 x g for 15 min at 4 $^{\circ}$ C.	month)
	• Transfer plasma into 10 x 0.5 ml aliquots. Evenly distribute remaining volume.	
	• Freeze immediately at -70 °C until shipping (Aliquots must be frozen within 3 hours of collection).	
EDTA blood tube,	 Mix the filled tube immediately by gently inverting 8-10 times. 	Dry ice
5 ml x 1	• Deliver tubes to the processing lab. Centrifugation should start within 2 hrs. of blood collection.	(once a
(P-tau181 and other	 Centrifuge the tubes at 1600-1800 x g for 15 min at 4 °C to isolate plasma. 	month)
Biomarkers)	 Transfer plasma into 5 x 0.5 ml aliquots. Evenly distribute the remaining volume. 	
	• Freeze immediately at -70 °C until shipping (Aliquots must be frozen within 3 hours of collection).	
Stool Collection Kit,	 No processing required at collection sites. 	Dry ice
(Microbiomics)	• After collection of the stool, the sample kit is transported at ambient temperature to the Lab.	(once a
	 The stool sample is stored at -70 °C until shipping to Biospecimens Core. 	month)

Table 2: Preanalytical Planning and Centralized Standard Operating Procedures.

Materials

- All tubes, tips and other consumables are checked for their suitability for omics studies.
- Harmonize sample labeling for all participating sites.
- Same brands of sample collectors and blood drawing tubes are used.
- Tube labels withstand all storage conditions including -80 °C.

Study participants

 Specimens are collected after overnight fasting, prior to any physical exercise, between 7 AM and 10 AM.

Biospecimens collection and preparation

- Accurate sample labeling.
- Sample types and collected volume, biofluid additives are well-defined.
- Centralized standard collection procedures are established.
- Acceptance criteria regarding sample quality is specified in the procedures.
- All centrifugation conditions ("g" force, temperature, time) are included in the blood processing procedures.
- Post-centrifugation periods until storage are specified in the procedures.
- Volume and number of sample aliquots for long-term storage at -80 °C are established.
- Standardized accurate mixing of thawed samples is established
- Refrozen samples are marked.
- Deviations from the protocol occur, the deviation report is documented and is accessible to all involved protects.

Table 3. Biospecimen collection by visits.

Tube type & Draw vol	Intended use (Assay)	Visit 1 (Enrollment)	Visit 2 (18 months)	Visit 3 (36 months)
Paxgene blood DNA, 8.5 ml	Genomics	X		X
Streck RNA Complete BCT, 10 ml	Transcriptomics	X		X
Paxgene blood RNA, 10 ml	Transcriptomics	X		X
Barricor (Heparin), 10 ml	Metabolomics	X		X
Stool Kit, 1X	Gut microbiota	X	X	X
EDTA blood, 5 ml	P-tau181 & other Biomarkers	X	X	X

Fig. 2: Schematic representation of specimen collection, extraction, and analysis of biofluids.

Project 3: Dietary Patterns, Weight History, and Microbiota Determinants of Cognitive Health Late in Life

Project 1: Molecular Architecture of Cognitively Superior Older Adults

Project 3: Dietary Patterns, Weight History, and Microbiota Determinants of Cognitive Health Late in Life

people in established high risk groups? Do the markers relate to measures of neuronal damage and cognitive reserve?

KEY DATES

• Scientific Review (June 21, 2022)

• Start Date (October 1, 2022)

• End Date (September 30, 2027)

