

COGNITIVE RESILIENCE CLINICAL INTERVENTION TRIALS: BLOOD PRESSURE, STATINS AND FISH OILS WHAT'S GOOD FOR THE HEART *IS* GOOD FOR THE BRAIN

MARK A. SUPIANO, M.D. PROFESSOR AND CHIEF, GERIATRICS DIVISION EXECUTIVE DIRECTOR, UNIVERSITY OF UTAH CENTER ON AGING

EVIDENCE BASED TREATMENTS TO PREVENT DEMENTIA

- 40% of dementia risk is potentially modifiable
- CDC/ Alzheimer's Association Building Our Largest Dementia (BOLD) Infrastructure Public Health Center of Excellence on Dementia Risk Reduction

Livingston G, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission.

Center on Aging Retreat May 2022

CLINICAL PRESENTATIONS

- Cardiovascular and Physical Activity
- Sensory and Sleep
- Neuropsychological

Center on Aging Retreat May 2022 3

VASCULAR DEMENTIA RISKS = HYPERTENSION AND MORE

A.M. Daugherty

- Mechanisms
 - Arterial stiffness
 - Endothelial dysfunction
 - Oxidative Damage
 - Inflammation
- Confounding factors
 - Obesity
 - Diabetes
 - Smoking
 - Hyperlipidemia

Daugherty, Seminars in Cell and Developmental Biology, https://doi.org/10.1016/j.semcdb.2021.03.002

Center on Aging Retreat May 2022

Seminars in Cell and Developmental Biology xxxx (xxxxx) xxx

4

THE VASCULAR SIDE OF BRAIN AGING AND ALZHEIMER'S DISEASE

 "Chronic hypertension is the most prevalent" and pernicious risk factor for cognitive impairment in aging."

Daugherty, Seminars in Cell and Developmental Biology, https://doi.org/10.1016/j.semcdb.2021.03.002

 "Vascular risk may complement imaging biomarkers in assessing risk of prospective cognitive decline in preclinical Alzheimer disease."

Liesz, 10.1126/science.aay2720

JAMA | Original Investigation

Effect of Intensive vs Standard Blood Pressure Control on Probable Dementia A Randomized Clinical Trial

JAMA | Original Investigation

Association of Intensive vs Standard Blood Pressure Control With Cerebral White Matter Lesions

The SPRINT MIND Investigators for the SPRINT Research Group

The SPRINT MIND Investigators for the SPRINT Research Group

Effect of Intensive vs Standard Blood Pressure Control on Probable Dementia

SPRINT research group. JAMA. January 2019.

PRagmatic EValuation of evENTs And Benefits of Lipid-lowering in oldEr adults

Participants will:

- Be randomly assigned to atorvastatin 40 mg daily or matching placebo.
- Be followed through yearly phone calls for close to four years.
- Receive cognitive and physical function testing at screening, over the phone, and at home, if triggered.

INFLAMMATION, COGNITIVE IMPAIRMENT AND **DEPRESSIVE SYMPTOMS**

Mark Rapaport, MD and team

- One-third of people with mild cognitive impairment (MCI) have comorbid depressive symptoms.
- Both MCI and depression are major ADRD predictors.
- Chronic inflammation may be a common mechanism underlying both
- Treatment with high-dose omega-3 fatty acids (n-3) has been shown to reduce systemic inflammation

HYPOTHESES

- Treatment with n-3 eicosapentaenoic acid (EPA) 4 gm/day vs. placebo will:
 - result in significantly better mean cognitive change scores
 - significantly reduce depressive symptom severity levels
 - significantly decrease inflammation

9

QUESTIONS...

About our logo...

The bristlecone pine tree (Pinus longaeva) - the earth's oldest inhabitant with a life span of 4,000 years - is found only in Utah and five other western states. Its extraordinary longevity and ability to adapt and survive in extremely harsh environmental conditions above 10,000 feet embodies the investigative spirit and mission of the Utah Center on Aging.

Center on Aging Retreat May 2022

Objectively Measured Sedentary Behavior and Physical Activity in PREVENTABLE Study R01AG074592

> Srinivasan Beddhu, MD Professor of Internal Medicine SLC VA Healthcare System and University of Utah School of Medicine Salt Lake City, UT

Sedentary Behavior

Classification of physical activity based on intensity levels

Туре	Example	MET*
Sedentary	Sitting and watching TV	<1.5
Very light intensity	Standing, walking very slow (< 2.0 mph)	1.5-1.9
Light intensity	Casual walking (2 to 2.5 mph), light gardening	2.0-2.9
Moderate intensity	Brisk walking (~ 3.5 mph)	3.0-5.9
Vigorous intensity	Running, lifting heavy weights	≥6.0
*Based on 2011 Compendium of Physical Activities ¹		

Sedentary behavior

- Sedentary behavior is engaging in activities in the seated or lying position that barely raise the energy expenditure above this level (~ 1.0-1.4 METs)
- Distinct from "physical inactivity" i.e., not achieving weekly goal
- One can exercise for 150 min/ week and sit for the rest of the 98% of awake time (2.5 / (16x7))
- There is a large body of literature on physical inactivity and dementia risk but not on the associations of sedentary behavior with MCI/ dementia

Distribution of physical activity intensity durations per 60 minutes of awake time in non-CKD and CKD in NHANES

Beddhu et al. CJASN. 2015 Jul 7;10(7):1145-53

Hazard ratios of death per 2 min/hr trade-off of sedentary duration with equal duration of light activity or MVPA duration*		
	个 2 min/hr of light activity duration HR (95% CI, p)**	个 2 min/hr of MVPA duration HR (95% CI, p)***
Entire cohort	0.67 (0.48, 0.93, p = 0.02)	0.80 (0.42, 1.51, p = 0.46)
CKD subgroup	0.59 (0.35, 0.98, p = 0.04)	0.46 (0.09, 2.45, p = 0.34)

*In Cox regression models taking survey design into account and adjusted for age, gender, race, education, smoke, alcohol use, lung disease, mobility limitations

**Mortality risk associated with each 2 min/hr decrement in a sedentary duration with a corresponding 2 min/hr increment in light activity duration while controlling for low intensity and MVPA durations

**Mortality risk associated with each 2 min/hr decrement in a sedentary duration with a corresponding 2 min/hr increment in MVPA duration while controlling for low intensity and light intensity activity durations

Ancillary study team

Principal Investigator

Srinivasan Beddhu, MD, University of Utah

PREVENTABLE Affiliated investigator

Mark Supiano, MD, University of Utah School of Medicine Jeff Williamson, MD, Wake Forest University Walter Ambrosius, PhD, Wake Forest University

Collaborators:

Tom Greene, PhD, University of Utah Kate Lyden, PhD, Colorado State University Aditi Gupta, MD, University of Kansas Medical Center

SPECIFIC AIM 1

- To examine the associations of sedentary duration with a composite of incident mild cognitive impairment (MCI) or dementia in older persons.
- To examine associations of 'trade-off' of 5 min/hr of sedentary duration to 5 min/hr of stepping duration with a composite of incident mild cognitive impairment (MCI) or dementia in older persons.

<u>Hypothesis</u>: Longer sedentary duration promotes faster decline of cognitive function decline; whereas, trade-off of sedentary duration for stepping duration is associated with slower cognitive function decline in older persons.

SPECIFIC AIM 2

- To examine whether PREVENTABLE intervention (atorvastatin compared to placebo) impacts on
- A. the number of steps/day and
- B. Sedentary and stepping durations/ day.

Hypothesis: Randomization to atorvastatin will result in lower incidence of physical disability which will associate with lower sedentary duration and higher physical activity levels relative to older persons randomized to placebo.

Ancillary study procedures

Visit (Month)/	Within 3 months of Randomization	Month 12	Month
Activity monitor training/education	Х		
Wearing of activity monitor for 7 days	Х	Х	Х
Completing wear time diary for 7 days	Х	Х	Х
Sedentary Behavior Questionnaire	Х	Х	Х

OPENING OUR MINDS: BROADENING THE DEFINITION OF 'SYMPTOMATIC' ATRIAL FIBRILLATION

BENJAMIN A. STEINBERG, MD, MHS, FACC, FHRS ASSOCIATE PROFESSOR OF MEDICINE CLINICAL CARDIAC ELECTROPHYSIOLOGY UNIVERSITY OF UTAH HEALTH SCIENCES CENTER

🕑 @ba_steinberg

DISCLOSURES

- Research Support
 - NIH / NHLBI (K23HL143156)
 - AHA/PCORI
 - Boston Scientific
 - Abbott
 - AltaThera

- Consulting / Speaking
 - AltaThera
 - Sanofi
 - InCarda

ATRIAL FIBRILLATION (AF) IN THE US: 10 MILLION BY 2025

ATRIA = Anticoagulation and Risk Factors in Atrial Fibrillation. Go AS, et al. JAMA. 2001;285(18):2370-2375. Miyasaka Y, et al. Circulation. 2006;114:119-125. Naccarelli GV, et al. Am J Cardiol. 2009; 104(11):1534-1539.

@BA_STEINBERG

@UofUCV

AF PREVALENCE

Go AS, et al. JAMA. 2001;285(18):2370-2375. Curtis AB, et al. J Am Coll Cardiol. 2018; 71(18):2041-57.

SYMPTOMS \neq ARRHYTHMIA

- Same-day ECG
- No paced/ indeterminate ECGs
- Pt ID of Rhythm
 - Sensitivity: 63%
 - Specificity: 91%
 - PPV: 63%
 - NPV: 91%

15-20% OF ALL STROKES DUE TO AF

 Stroke is a leading cause of death and disability

 AF-related strokes are worse than strokes of other causes

@BA STEINBERG

AF & COGNITION

@BA_STEINBERG

	Ν	Follow-Up (yrs)	Cognitive Decline	De
Bunch et al.	37,025	5		1.0
Marzona et al.	31,506	5	1.14 (1.03–1.26)	1.30 (2
De Bruijn et al.	6,514	21		1.33 (2
Singh-Manoux et al.	10,308	15	1.87 (1.37–2.55)	
Liao et al.	332,664	15		1.42 (2
			Diener H-C, et a T.J. Bunch, J.P. Weiss, B.G. Crar I. Marzona, M. O'Donnell R.F. de Bruijn, J. Heeringa, F.J. Wolte A. Singh-Manoux, A. Fay	al. J Am Coll Co ndall, et al. Heo , K. Teo, et al. r rs, et al. JAMA osse, et al.Eur

mentia 06–1.73 1.14–1.54) 1.02–1.73)

1.40–1.45)

Diener H-C, et al. J Am Coll Cardiol. 2019 Feb 12;73(5):612-619. h, J.P. Weiss, B.G. Crandall, et al. Heart Rhythm, 7 (2010), pp. 433-437. Marzona, M. O'Donnell, K. Teo, et al. CMAJ, 184 (2012), pp. E329-E336. J. Heeringa, F.J. Wolters, et al. JAMA Neurol, 72 (2015), pp. 1288-1294. Singh-Manoux, A. Fayosse, et al.Eur Heart J, 38 (2017), pp. 2612-2618. J.N. Liao, T.F. Chao, C.J. Liu, et al. Int J Cardiol, 199 (2015), pp. 25-30.

AF & COGNITION: META-ANALYSIS

	Studies (n)	RR
AF & cognitive impairment with <u>or</u> without stroke	14	1.40
AF & dementia	8	1.38
AF & cognitive impairment	9	1.50
AF & cognitive impairment <u>independent</u> of stroke	10	1.34
AF and cognitive impairment <u>after</u> stroke	7	2.70

Kalantarian, T.A. Stern, M. Mansour, J.N. Ruskin. Ann Intern Med, 158 (5 Pt 1) (2013), pp. 338-346 Diener H-C, et al. J Am Coll Cardiol. 2019 Feb 12;73(5):612-619.

POTENTIAL MECHANISMS: AF & COGNITION

AF & STROKE (& COGNITION)

Incidence of Stroke is Directly Dependent on Diagnostic Methods Used and Traditional Stroke Symptoms Correlate Inconsistently with Infarcts on MRI

Are "Silent" Strokes Really Silent?

Traditional Clinical Symptoms

No Traditional **Clinical Symptoms**

Deficiencies of cognitive operations, semantic memory, language production and mental flexibility are present with testing at 2 years

Brain Injury in Patients with Atrial Fibrillation

- 1. "Clinical" Stroke/TIA diagnosis significantly underestimated incidence
- 2. "Silent" Strokes is a misnomer and these infarcts impact function when targeted testing is used

@BA_STEINBERG

@UofUCV

Bunch TJ, Steinberg BA. Eur Heart J. 2022 Feb 18;ehab900.

<u>C</u>OGNITIVE DECLINE AND DEMENTIA IN PATIENTS WITH NON-VALVULAR ATRIAL FIBRILLATION (CAF) TRIAL

@BA_STEINBERG

Bunch TJ, et al. Submitted.

CEREBROVASCULAR RESERVE IN AF (CANINE)

Decreased Perfusion

В

Α

Changes in Average Cerebrovascular Reserve in the **Gray and White Brain Matter**

Gray Matter Reserve Blood Flow White Matter Reserve Blood Flow Strauss W et at. Conservation Physiology. 2017;5(1), cow078. Zenger B...Bunch TJ. JACC EP. In Revision.

Post-Pharmacological Challenge Imaging Time = 15 min

Increased Perfusion

SUMMARY: AF & COGNITION

- Causal relationship beyond stroke
 - Mechnism unclear (?cerebrovascular reserve)
- Future directions
 - Additional animal work (mechanism)
 - Patient Reported Outcomes vis-à-vis memory, cognition
 - Not-so-'silent' infarcts
 - Potential interventions (e.g., 'novel-er' blood thinners, ablation)

THANK YOU **WANTVERSI**

@UofUCV

and a second

AF ABLATION IN HF: NOT EVERYONE WINS

Jones DG, et al. J Am Coll Cardiol, 2013; 61(18): 1894-1903.

@UofUCV

	RC1
	RC2
	RC3
	₩RC4
	-RC5
	+RC7
	-RCB
	RC10
	-RC14
	-Rc15
	RC17
	++RC22
	-RC23
	-RC24
1	
	10

HETEROGENEITY OF TREATMENT EFFECTS

A Average Treatment Effect Assessed in a Heterogeneous Population

B Identification of Heterogeneous Responses to Treatment

Yeh RW and Kramer DB. Circulation. 2017;135:1097-1100. Adapted from the ideas of John A. Spertus, MD, MPH.

Balance, Mobility, and Concussion in Older Adults

University of Utah Center on Aging 15th Annual Research Retreat May 26, 2022

> Peter Fino, PhD **Assistant Professor** Health and Kinesiology **College of Health University of Utah**

My research focuses on quantifying balance and mobility during functionally relevant tasks to inform rehabilitative care and clinical decisions

Ecologically relevant and real-world tasks

Wearables / clinically deployable tools

Return-to-life after concussion

@pcfino

Older adults suffer more concussions (i.e., mTBIs) than any other age group and the majority are caused by falls¹

Greater mortality from nervous system (e.g., PD) and dementia-related disorders³

39

We have very little knowledge of the effects of concussions in older adults

Young adults # **Older adults**

		Establish Falls	ed Relatio in Older A	nship with dults	Establish mTBl	ed Consequ in Young Ac	ence of dults
		Review	Retro	Pro	Review	Between	Within
C C	Patient Self-Report						
lan	Clinical Measure						
Ba	Objective Measure						
ion	Patient Self-Report					1	
gnił	Clinical Measure		\checkmark			-	
ů U	Objective Measure						\checkmark
po	Patient Self-Report	/	/		1	1	/
Ň	Clinical Diagnosis				\checkmark	\checkmark	
nic	Patient Self-Report		/	/			
mo	Clinical Measure						
utor	Objective Measure		\checkmark	\checkmark	\checkmark	\checkmark	
Ā	Rev R	view = Syst etro = Asso Pro = Asso	ematic rev ociation w	view or Met ith retrospe ith prospec	ta-analysis ctive falls tive falls	Betweer Withir	n = Comp n = Comp

Step 1: Establish the 'natural history of concussion' in older adults Step 1B: Establish guidelines for care for older adults after concussion

Can we change someone's trajectory?

Age

Concussions are complex - our translational research is only possible because of interdisciplinary perspectives at Utah

Neuromechanics & Applied Locomotion Lab

COLLEGE OF

HEALTH UNIVERSITY OF UTAH Eunice Kennedy Shriver National Institute of Child Health and Human Development

Rehabilitation Science

ics

Improving Care for People with Concussion

Biomechan

Optimizing Antihypertensive Treatment in 2022 to Prevent Cardiovascular Disease and Dementia: Lessons Using Pharmacoepidemiology

Adam Bress, Pharm.D., M.S. Associate Professor

Department of Population Health Sciences Division of Health System Innovation and Research University of Utah School of Medicine VA Salt Lake Health Care System

May 25, 2022, Center on Aging Cognitive Resilience Retreat, University of Utah

Background: blood pressure & cognitive outcomes

- Hypertension, particularly in mid-life, is a modifiable risk factor for cognitive decline and dementia
 - Hypertension affects ~50% of the US adult population
- Meta-analyses of BP-lowering RCTs show that lowering BP with antihypertensive medication reduces risk of cognitive outcomes, yet precise causal mechanisms remain unclear
- Whether cognitive benefits are achieved via BP reduction alone or via direct effects of antihypertensive medications on the brain, independent of BP-lowering effects is unclear

Should we be using ARBs routinely over ACEIs?

- Angiotensin II receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs) are used by approximately 33 million US adults
 - ~20 million taking an ACEI
 - ~13 million taking an ARB
- Current guidelines recommend ARBs and ACEIs interchangeably for hypertension treatment
- Notably, ARBs and ACEIs work distinctly on the renin-angiotensin system (RAS)

Proposed mechanism of differential effects of ARBs vs. ACEIs?

- ARBs bind AT1 receptors, downstream from where ACEIs act
- Shifting circulating Ang II to bind/stimulate AT2, AT4 Mas receptors leading to:
 - oxidative stress, neuroinflammation, and endothelial dysfunction
 - **1** cerebral hypoperfusion and potentially memory-enhancing effects
- In contrast, by inhibiting conversion of Ang I to Ang II, ACEIs I circulating Ang II
- Thereby, ↓ stimulation of AT1 and AT2/AT4 receptors and I potential for beneficial effects of agonism at AT2/4 receptors

In an active-comparator, new-user design, we emulated a target trial to evaluate the effect of initiating an ARB (N=727) vs. ACEI (N=1,313) on MCI of dementia using SPRINT MIND

- NS
- NS
- NS

- 0.007
 - NS
- 4.9 years median follow-up

Comparing the incidence of dementia or MCI among users of regimens that contained exclusively stimulating vs inhibiting antihypertensives

Secondary analysis of SPRINT MIND, cohort study comparing prevalent users of regimens containing exclusively stimulating vs inhibiting antihypertensives at the 6-month study visit.

Implications

- We **did not** find evidence of an appreciable effect of initiation of an ARB-• vs. ACEI-based medication regimen on MCI or probable dementia in SPRINT MIND.
- We did find evidence of lower risk of MCI or probable dementia among new users of an ARB vs. ACEI in *the standard treatment arm*, suggesting benefits of intensive BP control may have diminished any potential beneficial effects of ARBs over ACEIs.
- Prevalent users of regimens that contain exclusively **antihypertensives that** stimulate vs inhibit type 2 and 4 angiotensin II receptors had lower rates of incident cognitive impairment.

Implications

- The US prevalence of hypertension is large (~45%)
- CVD and ADRD prevalence will rise substantially with the aging US population
 - The potential for public health benefit of optimizing anti-HTN medication use to prevent CVD and ADRD is enormous.
- ~33 million US adults are currently taking RAS blockade
- ~20 million are on an ACEI
- Even a 10% relative benefit of ARBs could provide an enormous population health impact of switching first-line RAS-blockade from **ACEIs to ARBs**

NATIONAL ACADEMY OF MEDICINE

Can Preferentially Prescribing Angiotensin II Receptor Blockers (ARBs) over Angiotensin-Converting Enzyme Inhibitors (ACEIs) Decrease Dementia Risk and Improve Brain Health Equity?

Zachary A. Marcum, PharmD, PhD, University of Washington; Jordana B. Cohen, MD, MSCE, University of Pennsylvania; Eric B. Larson, MD, MPH, Kaiser Permanente Washington Health Research Institute; Jeff Williamson, MD, MHS, Wake Forest School of Medicine; and Adam P. Bress, PharmD, MS, University of Utah

May 9, 2022

DISCUSSION PAPER

Central Points Made in the NAM Discussion Paper

Introduction

Part I: ARBs vs. ACEIs

Background

Methods

Results

Conclusions

Part II: Therapeutic Inertia

Background

Methods

Results

Conclusions

Summary

- 1. ARBs and ACEIs have similar efficacy in terms of blood pressure-lowering and CVD event reduction
- 2. ARBs have a more favorable safety profile than ACEIs
- 3. Short-term RCT data suggest a comparative benefit of **ARBs over ACEIs in preventing cognitive decline**
- 4. There is biological plausibility of a cognitive benefit of **ARBs over ACEIs**
- 5. There is growing data from secondary data analyses suggesting a comparative benefit of ARBs over ACEIs 6. There is currently no effective disease-modifying
- treatment for dementia

THANK YOU!

National Heart, Lung, and Blood Institute

Collaborators, Mentees, & Supporters

- Tom Greene
- Rachel Hess
- **Brandon Bellows**
- Jordan King
- Paul Muntner
- Ambarish Pandey
- Daichi Shimbo
- Alfred Cheung
- Katie Derington
- Alex Zheutlin
- Josh Jacobs
- **Ransmond Berchie**

- Jordy Cohen
- April Mohanty
- Andrew Moran
- Bill Weintraub
- Aisha Langford
- Calvin Colvin
- Rick Kittles
- Lynn Jorde
- Dan Scharfstein
- Zach Marcum
- Daniel Addo

Funding

- NHLBI
- NIA
- NIA

JHS Partipcants REGARDS Participants **SPRINT Participants SPRINT Coordinating Center SPRINT Research Group**

- Investigators
- Staff

NHLBI, NIA, and NINDS Support

R01HL139837 (MPI) R01AG065805 (PI) R01AG074989 (MPI)

©UNIVERSITY OF UTAH HEALTH, 2022

There is one more thing...

Funding & Acknowledgements

Principial Investigator

- R01 AG065805 (Bress)
- R01 AG074989 (Multi-PI: Bress and Cohen)
- R01 HL139837 (Multi-PI: Moran/Bress/Weintraub)
- National Academy of Medicine Fellowship in Pharmacy

Co-Investigator

- R01 HL117323 (Multi-PI: Muntner/Shimbo/Ogedegbe) JHS-HWG
- R01 NR01889 (Baron, PI)
- R01 HL157439 (King, PI)

Central

Thank you to my team!

Primary outcome results

SENSITIVITY ANALYSES

Introduction
Part I: ARBs vs. ACEIs
Background
Methods
Results
Conclusions
Part II: Therapeutic Inertia
Background
Methods
Results
Conclusions
Summary

- SPRINT was designed to achieve an SBP goal of 135 to 139 mm Hg in the standard arm.
- However, intensification only indicated in the standard group if:
 - SBP >140 mm Hg at 2 consecutive study visits or
 - SBP >160 mm Hg at a single visit
- To address, we performed 2 sensitivity analyses:
 - 1. Redefining therapeutic inertia to require 2 consecutive study visits where SBP was above goal with no change or a reduction in the participant's antihypertensive medication regimen intensity for both randomized treatment groups.
 - 2. Restrict to the standard group and required either 1 study visit with SBP ≥160 mm Hg or 2 consecutive study visits with SBP ≥140 mm Hg.

WAS OUR DEFINITION OF TI STRICT ENOUGH? SENSITIVITY ANALYSIS REQUIRING TWO CONSECUTIVE VISITS

	Standard arm	
	Non-Hispanic White	Non-Hispanic Black
Unique participants, n	2451	1306
Participant-visits, n	13704	7364
Overall Prevalence, % (95% CI)	12.7 (12.0,13.5)	10.6 (9.0,12.4)
12 Month Prevalence, % (95% CI)	10.8 (8.3,13.9)	10.5 (7.3,15.0)
36 Month Prevalence, % (95% CI)	10.1 (6.8,14.8)	5.3 (2.5,11.1)
Adjusted OR (95% CI)		
N=4091	1 (Reference)	0.83 (0.73,0.94)
	Intensive arm	
	Non-Hispanic White	Non-Hispanic Black
Unique participants, n	2638	1328
Participant-visits, n	22290	10688
Overall Prevalence, % (95% CI)	21.2 (20.4,22.1)	19.5 (17.3,21.7)
12 Month Prevalence, % (95% CI)	20.3 (17.4,23.6)	17.8 (13.8,22.6)
36 Month Prevalence, % (95% CI)	23.9 (19.8,28.6)	24.3 (18.2,31.7)
§Adjusted OR (95% CI)		
N=4373	1 (Reference)	0.93 (0.84,1.04)

k Hispanic 383 1739 9.3 (7.1,11.9) 1.8 (0.1,9.4) 20.5 (10.8,35.5)

0.73 (0.57,0.92)

Hispanic 445 2404

16.3 (13.3,20.1) 10.5 (5.4,19.4) 12.5 (5.0,28.1)

0.78 (0.65,0.95)

NO DIFFERENCE IN FOLLOW-UP SYSTOLIC BLOOD PRESSURE AMONG NEW USERS OF ARBS AND ACEIS

Introduction	Receptor	Actions	Loca
Background	ΔΤ.	Vasoconstriction, increase sodium retention, suppress renin secretion, increase endothelin	Vessels hrain heart kid
Methods	וח	secretion increase vasonressin release activate symnathetic activity promote myocyte	and nerves
Results		hypertrophy, stimulate vascular and cardiac fibrosis, increase myocardial contractility, induce	
Conclusions	rtia AT ₁ AT ₂ AT ₃ AT ₄	arrhythmias, stimulate plasminogen activator inhibitor 1, and stimulate superanoxide formation	
Part II: Therapeutic Inertia			
Background	AI_2	Antiproliferation/inhibition of cell growth, cell differentiation, tissue repair, apoptosis,	Adrenal gland, heart, bra
Methods		vasodilation (NO mediated?), kidney and urinary tract development, control of	and injured tissues
Results		pressure/natriuresis, stimulate renal prostaglandins, and stimulate renal bradykinin and NO	
Conclusions	AT_3	Unknown	Neuroblastoma cells in a
Summary	AT ₄	Renal vasodilator; stimulate plasminogen activator inhibitor 1	Brain, heart, vessels, lun gland, and kidney

tion

dney, adrenal gland,

ain, myometrium, fetus,

amphibians

ngs, prostate, adrenal

DID PROGRESSIVE COVARIATE ADJUSTMENT IMPACT THE ASSOCIATIONS IN THE STANDARD ARM?

			Standard arm
		Non-Hispanic White	Non-Hispanic Blac
	Odds ratio (95% CI)		
	Model 1	1 (Reference)	0.89 (0.84, 0.95)
nertia	N=4,141 ⁺		
	Model 2	1 (Reference)	0.92 (0.86, 0.99)
	N=4,069 [†]		
	Model 3	1 (Reference)	0.85 (0.79, 0.92)
	N=4,092 [†]		
nertia	Model 4	1 (Reference)	0.88 (0.82,0.96)
	N=4092 ⁺		
nertia	Model 5 *	1 (Reference)	0.89 (0.82,0.97)
	$N = 1.092^{+}$		

Model 1 included race/ethnicity and time as the only fixed effects.

Model 2 was adjusted for race and time, in addition to age, sex, education, employment, living with others, insurance status, source of care, smoking status, BMI, depression, statin use, aspirin use, as well as baseline SBP, eGFR, serum potassium, serum sodium, number of antihypertensive medications, prior mTIS, ACEI/ARB, CCB, thiazide diuretic, loop diuretic, beta-blocker, alpha-blocker, and number of non-antihypertensive medications.

Model 3 added clinical measurements and serious adverse events reported within one month prior of the study visit. Model 4 added mm Hg the SBP is above the treatment goal and the number of prior study visits with therapeutic inertia. Model 5 added an interaction between race/ethnicity and time.

Introduction

Part I: ARBs vs. ACEIs

Background

Methods

Results

Conclusions

Part II: Therapeutic II

Background

Methods

Results

Conclusions

Summary

DID PROGRESSIVE COVARIATE ADJUSTMENT IMPACT THE **ASSOCIATIONS IN THE INTENSIVE ARM?**

	Intensive arm							
Introduction		Non-Hispanic White	Non-Hispanic Black	Hispanic				
Part I: ARBs vs. ACEIs	Odds ratio (95% CI)	_	-	-				
Background	Model 1 N=4,415 ⁺	1 (Reference)	0.94 (0.90, 1.00)	0.86 (0.76, 0.95)				
Methods Results	Model 2 N=4,364 ⁺	1 (Reference)	0.96 (0.90, 1.02)	0.87 (0.78, 0.97)				
Conclusions	Model 3 N=4,377 [†]	1 (Reference)	0.94 (0.88, 1.01)	0.89 (0.79, 1.00)				
Part II: Therapeutic Inertia Background	Model 4 N=4377 [†]	1 (Reference)	0.99 (0.92,1.05)	0.99 (0.87,1.10)				
Methods	Model 5 *	1 (Reference)	0.99 (0.92,1.05)	0.95 (0.84,1.06)				

Results

Conclusions

Summary

Model 1 included race/ethnicity and time as the only fixed effects.

Model 2 was adjusted for race and time, in addition to age, sex, education, employment, living with others, insurance status, source of care, smoking status, BMI, depression, statin use, aspirin use, as well as baseline SBP, eGFR, serum potassium, serum sodium, number of antihypertensive medications, prior mTIS, ACEI/ARB, CCB, thiazide diuretic, loop diuretic, beta-blocker, alpha-blocker, and number of non-antihypertensive medications.

Model 3 added clinical measurements and serious adverse events reported within one month prior of the study visit. Model 4 added mm Hg the SBP is above the treatment goal and the number of prior study visits with therapeutic inertia. Model 5 added an interaction between race/ethnicity and time.

ANGIOTENSIN II RECEPTORS, THEIR FUNCTIONS AND LOCATION

Drug (Active Metabolite)	AT ₁ Receptor Affinity, nmol/L	Bioavailability, %	Food Effect	Active Metabolite	Half-Life, h	Protein Binding, %	Dosage, mg/d
Losartan (EXP 3174)	IC ₅₀ , 20	33	No	Yes	2 (6–9)	98.7 (99.8)	50–100
Valsartan	IC ₅₀ , 2.7	25	Yes, -40%	No	9	95	80–320
Irbesartan	IC ₅₀ , 1.3	70	No	No	11–15	90*	150–300
Candesartan cilexetil							
(TCV 116)			No	Yes	3.5–4		4–16 (32)
(CV11974)	K _i , 0.6	42			3–11	99.5	
Telmisartan	K _i , 3.7	43	No	No	24	>99	40-80
Eprosartan	IC ₅₀ , 1.4–3.9	15	No†	No	5–7	98	400-800

Values are mean or range. K_i indicates inhibition constant.

*Some studies suggest that irbesartan has a greater protein binding (>95%).

†Depending on the formulation, there may be a food effect.

PK DIFFERENCES BETWEEN INDIVIDUAL ARBS

2.5

META-ANALYSIS OF RCTS- COMPARATIVE EFFECTS OF ARBS VS ACEIS ON CVD OUTCOMES

Compariso	on group Placebo	CCBs	ACE inhibitors	β-blockers	Diuretics
ARBs	0.60 ± 0.18 (<i>P</i> = 0.02)	0.57 ± 0.24 ($P = 0.06$)	0.47 ± 0.17 (P = 0.04)	0.67 ± 0.18 (<i>P</i> = 0.01)	0.54 ± 0.19 (<i>P</i> = 0.04)
CCBs	0.02 ± 0.19 (P = 0.91)	_	-0.11 ± 0.22 (P = 0.65)	0.10 ± 0.17 (P = 0.58)	-0.03 ± 0.24 (P = 0.89)
ACE inhibitors	0.13 ± 0.17 (P = 0.49)		_	0.21 ± 0.15 (P = 0.23)	0.07 ± 0.17 (<i>P</i> = 0.70)
β-blockers	-0.08 ± 0.13 (P = 0.59)			_	-0.13 ± 0.19 (P = 0.50)
Diuretics	0.06 ± 0.17 (P = 0.76)				_

Messerli FH, Circulation. 2022.

NETWORK META-ANALYSIS OF RCTS- COMPARATIVE EFFECTS OF ARBS VS ACEIS ON COGNITION

17 RCTs (n =13,734) to compare effects of the different drug classes on overall cognition.

Mean difference of change in overall cognition (expressed as effect size) of treatment – comparison group standard deviation (P-value).

Treatment	Comparison group	Placebo	CCBs	ACE inhibitors	β-blockers
	ARBs	0.60 ± 0.18 (<i>P</i> = 0.02)	0.57 ± 0.24 (<i>P</i> = 0.06)	0.47 ± 0.17 (<i>P</i> = 0.04)	0.67 ± 0.18 (<i>P</i> = 0.01)
	CCBs	0.02 ± 0.19 (P = 0.91)	-	-0.11 ± 0.22 (<i>P</i> = 0.65)	0.10 ± 0.17 (<i>P</i> = 0.58)
A	CE inhibitors	0.13 ± 0.17 (<i>P</i> = 0.49)		-	0.21 ± 0.15 (<i>P</i> = 0.23)
	β-blockers	-0.08 ± 0.13 (P = 0.59)			-
	Diuretics	0.06 ± 0.17 (<i>P</i> = 0.76)			

Marpillat ML, Journal of Human Hypertension. 2013.

l cognition. reatment

Diuretics

 0.54 ± 0.19 (P = 0.04) -0.03 ± 0.24 (P = 0.89)

 0.07 ± 0.17 (P = 0.70)

 -0.13 ± 0.19 (P = 0.50) Introduction

Part I: ARBs vs. ACEIs

Background

Methods

Results

Conclusions

Part II: Therapeutic Inertia

Background

Methods

Results

Conclusions

Summary

AMONG THOSE WITH THERAPEUTIC INERTIA, **HOW MUCH WAS THEIR BLOOD PRESSURE ABOVE GOAL ON AVERAGE?**

Standard arm

NH White M NH Black Hispanic

Introduction

Part I: ARBs vs. ACEIs

Background

Methods

Results

Conclusions

Part II: Therapeutic Inertia

Background

Methods

Results

Conclusions

Summary

AMONG THOSE WITH THERAPEUTIC INERTIA, **HOW MUCH WAS THEIR BLOOD PRESSURE ABOVE GOAL ON AVERAGE?**

Standard arm

NH White M NH Black Hispanic

COGNITIVE OUTCOME ASCERTAINMENT IN SPRINT

ntroduction	MIND Questionnaires/Tests	Screenin
I: Pharmacoepi	Guestionnaires/rests	g or RZ
Ind	Dementia Screening	
	MoCA	x
	Digits Symbol Coding Test	x
S	Logical Memory Test	x
nd HTEs	Story A	
•	Cognitive Battery (subset)	
	Hopkins Verbal Learning Test	x
	Trail Making Tests A and B	x
0 0 0 0	Digit Span	x
•	Boston Naming Test	x
•	Modified Rey-Osterrieth Figure	x
	Verbal Fluency Animals	x

Close

Out A*

2 yr

Х

Х

х

Х

х

Х

Х

Х

х

4 yr

х

х

х

Х

х

Х

Х

Х

х

Neurocognitive Battery

COGNITIVE DOMAIN	TEST	B
Global Functioning	Montreal Cognitive Assessment (MoCA)	Pa
Executive Function,	Digit Symbol Coding Test	rao thi
Speed of Processing	Trail Making Test	we
Learning and Memory	 Logical Memory I Hopkins Verbal Learning Test–R 	Fu Qı ad
Visual-Spatial Memory	Modified Rey-Osterreith Figure	Pa
Working Memory, Attention, Verbal Fluency	 Digit Span Forward and Backward Category Fluency-Animals 	co tes a ۱ ba
Language and Naming	Boston Naming Test (15 item)	Ar

old = Tests in Cognitive reening Battery

rticipants scoring ow education and ce/ethnicity-specific esholds on the MoCA re then administered naining tests, and the nctional Assessment estionnaire was ministered to a proxy

rticipants that could not mplete in-person sting were administered validated telephone ttery See Rapp *et al.* J *n Geriatr Soc* (2012)

Adjudication Components for Determining Cognitive Status SPRINT MIND Screening Cognitive Battery + SPRINT MIND Extended Cognitive Battery +Proxy Report (FAQ or Modified Dementia Questionnaire) + Depression (PHQ-9) and Medications

Expert Adjudication (w/classification: PD, MCI, No Impairment) Adjudicators were blinded to treatment group and BPs
3 STEP PROCESS FOR COGNITIVE OUTCOME ASCERTAINMENT IN SPRINT

Introduction

Part I: Pharmacoepi					
Background					
Methods					
Results					
Conclusions					
Part II: PATH and HTEs					
Background					
Methods					
Results					
Conclusions					

- Conclusions
- Summary

- To identify possible cases of dementia a brief Cognition Screening Battery 1. will be administered to all participants.
- 2. Participants who score below the pre-designated screening cut-point for possible cognitive impairment were administered a more comprehensive and detailed neurocognitive test battery (the Extended Cognitive Assessment Battery) plus the Functional Assessment Questionnaire (FAQ) which assesses impairments in daily living skills as a result of cognitive impairments.
- All the above available tests and questionnaire data were submitted to a 3. centralized, web-based system for adjudication by a panel of dementia experts who will assign final study classifications of probable dementia, MCI or no impairment (NI).

The Hear and Know: Hearing Loss, Cognition, and Cochlear Implants in Older Adults

Thoughts by Richard K. Gurgel, MD, MSCI Associate Professor – Otolaryngology

DISCLOSURES

- Research funding:
 - NIH/NIA 1 R21 AG067403-01A1
 - Center on Aging Pilot Grant
- Surgical Advisory Board: Med-El
- Industry: Institutional Research Funding • from Cochlear Corp and Advanced

OVERVIEW

Hearing loss and dementia

• Treating hearing loss: - Cochlear implants and cognition

Juclei of lateral lemniscu Cochlea

HEARING LOSS AND DEMENTIA

		Results	by year
ORIGINAL ARTICLE Central Auditory Dysfunction as a Harbinger of Alzheimer Dementia George A. Gates, MD; Melissa L. Anderson, MS; Susan M. McCurry, PhD; 4. Patrick Feeney. PhD: Eric B. Larson. MD. MPH		•	
	Neuropsychology 2011, Vol. 25, No. 6, 763–770		
	Hearing Loss	and Cognition in the	Baltimore Longitudinal Study
ORIGINAL INVESTIGATION	F	rank R. Lin Hopkins University	Luigi Ferrucci, E. Jeffrey Metter Alan B. Zonderman, and Susan National Institute on Aging, Baltimor
Example FIRST Hearing Loss and Cognitive Decline in Old Erank R. Lin, MD, PhD; Kristine Yaffe, MD; Jin Xia, MS; Qian-Li Xue, PhD; Tamara B. Harris, Elizabeth Purchase-Helzner, PhD; Suzanne Satterfield, MD, DrPH; Hilsa N. Ayonayon, PhD; Luigi Ferrucci, MD, PhD; Eleanor M. Simonsick, PhD; for the Health ABC Study Group	ler Adults MD, MS; Relat	ionship of He	aring Loss and Den
	A *Richar †‡§Mari	Prospective, P d Klaus Gurgel, *Pro a C. Norton, Norm	Population-Based St eston Daniel Ward, †Sarah S an L. Foster, and †§JoAnn T
<i>rryngoscope Investigative Otolaryngology</i> 2017 The Authors Laryngoscope Investigative Otolaryngology blished by Wiley Periodicals, Inc. on behalf of The Triological Society			
Iearing Loss as a Risk Factor for Deme	ntia: A Syste	matic Review	
Rhett S. Thomson, BA; Priscilla Auduong, MD; Alexande	er T. Miller, BS; Rich	ard K. Gurgel, MD	

nentia: udy chwartz, Tschanz

Hearing Loss & Cognition

Hearing Loss as a Modifiable Risk Factor

Hearing loss intervention could:

- Reduce the cognitive load of processing degraded sound
- Provide increased brain stimulation
- Improve social engagement

Role of HL as a potentially modifiable, mid & late-life risk factor for cognitive decline & dementia

or

COCHLEAR IMPLANTS

Cralapp

COCHLEAR IMPLANTS IN OLDER ADULTS

- Only 5-10% of adult cochlear implant candidates in the US have received cochlear implants
- Average delay from time of ulletprofound ARHL to CI is 10 years
- Fastest growing segment of CI • users = older adults

COCHLEAR IMPLANT COGNITION

The Laryngoscope © 2021 The American Laryngological, Rhinological and Otological Society, Inc.

Evaluating the Impact of Cochlear Implantation on Cognitive Function in Older Adults

Richard K. Gurgel, MD, MSCI ^(b); Kevin Duff, PhD ^(b); Norman L. Foster, MD; Kaitlynn A. Urano, AuD; Alvin deTorres, MD 🗈

- 37 patients, ≥ 65 yo
- Cognitive testing before and 1 year after cochlear implant

Cognitive domain	Verbal stimuli/responses	Visual stimuli/respons
Simple attention	Digit Span	Spatial Span
Sustained attention	Stroop Color Word Test	d2 Test of Attention
Learning and memory	HVLT-R	BVMT-R
Executive functioning	Hayling Sentence Completion	Trail Making Test Part
	Test	

Impaired cognition (MMSE ≤24)

Normal cognition (MMSE ≥25)

COCHLEAR IMPLANTS COGNITION

- Cochlear implants improve cognition in older adults
- Individuals with cognitive impairment - Even more improvement
- Do cochlear implants protect against dementia?

CONCLUSIONS

- There is an association between hearing loss and dementia
- Cochlear implants are safe and effective in older adults, and can improve cognition
- Cochlear implants may reduce risk of dementia

INTRODUCTION OF TEAM

Ankita Date (UPDB), Mike Newman (EDW), Tom Belnap (IHC), Alison Fraser (UPDB) ullet

THANK YOU

Questions

F---

and a second

Sensory Integration for Navigation: Effects of Age and Sensory Impairment

Sarah Creem-Regehr **Department of Psychology** University of Utah

Visual Perception and Spatial Cognition http://www.cs.utah.edu/research/groups/percept/

Visual Perception and Spatial Cognition Lab

We study how people perceive, learn, and navigate spaces in natural, virtual, and visually impoverished environments.

Basic research motivated by real world problems

- Perceptual fidelity of virtual environments
- Navigation challenges with healthy aging and sensory pathology

Navigation and Aging

Navigation ability is critical for independent living and influenced by age-related changes in sensory processing

Campos et al, 2020 Frontiers for Young Minds

Navigation and Aging

How are visual and self-motion cues integrated for balance and navigation? (CoA pilot grant with P. Fino and J. Stefanucci)

- Do younger and well-aging older adults use the ${}^{\bullet}$ same sensory weighting strategies?
- How does sensory weighting for balance relate to lacksquarenavigation?
- Is sensory weighting similar in real and virtual lacksquareenvironments?

Homing Task in Virtual Reality

Navigation and Sensory Impairment

How does severe vision loss (low vision) influence sensory integration for navigation?

VR Low Vision Simulation

S**Ory** imulation

Navigation and Sensory Impairment

How are auditory cues integrated with vision and self-motion to influence balance and navigation? (American Otological Society grant to Corey Shayman, MD-PhD student)

- In well-aging individuals
- In simulated vision or vestibular loss

Homing Task in Virtual Reality

Cognitive Resilience and Collaborations

Development of virtual reality methods for use in research and clinical applications

- **Controlled** simulations
- Accessible and interesting to participants lacksquare

Understanding sensory weighting to improve rehabilitation, training, and assistive devices

Shared interests in core resources of proposed Pepper Center

Clinical Core: expanded and longitudinal participant database including \bullet cognitive and functional status

Motor Behavioral Profile Scores as Biomarkers for Alzheimer's Disease

Supported by: K01AG073578 vincent.koppelmans@utah.edu

✓@VKoppelmans

Areas for collaboration

- Exercise Physiology / Kinesiology: Setting up exercise interventions aiming at improving motor function
- Cognitive Neurology: Further determination of key aspects of comorbid movement disorders in MCI/AD
- Radiology: Quantification of cerebrovascular pathology (ASL, automated quantification of WML and microbleeds, phase contrast imaging for total CBF)

vincent.koppelmans@utah.edu \@VKoppelmans

Pepper Center Support

- Clinical Core:
 - Recruitment of participants: a) healthy older adults; b) individuals with pre-symptomatic AD pathology and those with ADRD
- Data and Biomarker Core: Repurposing biomarker and imaging data (repositories), development/application of machine learning algorithms

Plasticity-Based Digital Interventions for Major **Depression and Cognitive** Impairment Sarah Shizuko Morimoto, Psy.D. Associate Professor Department of Population Health Sciences

NEUROBIOLOGICAL MODEL OF NEUROFLEX: GRAPHICAL ABSTRACT

PRINCIPLES OF NEUROFLEX:

PLASTICITY IN AN AGING BRAIN Requires:

- Selection of specific, clinically-relevant network.
- Extensive practice/activation of network
- "Bottom up" + "top down" modules
- Neurotransmission associated with reward (Bao et al, 2001; Mahncke et al; 2006)

PARADIGMS ENGAGE CCN WITH SENSORY, MOTOR, AND COGNITIVE TASKS THAT ARE:

- Increasingly challenging
- Dynamic difficulty adjusted
- "Layered"
- Attention demanding
- Immediately rewarding (Bao et al, 2001; Bao et al, 2004; Mahncke et al; 2006)

NEUROFLEX IS A DIGITAL SOLUTION DEVELOPED TO TREAT THE SPECIFIC COGNITIVE DEFICITS THAT PREDICT POOR CLINICAL OUTCOMES IN DEPRESSION. IT IS:

- Short (4 weeks)
- Efficacious For Mood and

Cognition

Easily Disseminated

Neuroplasticity-Based Computerized Cognitive Remediation (nCCR) Administration Manual

IN ADDITION TO REATING COGNITI DEFICITS:

• NeuroFlex is Designed To Be a

OF UTAH HEALTH

PILOT TRIAL: MIXED MODELS : NEUROFLEX VS. **ESCITALOPRAM**

PILOT TRIAL: EFFECT ON COGNITIVE CONTROL

*Morimoto et. Al., Nature Communications, 2014

RANDOMIZED, DOUBLE-BLIND, CONTROLLED TRIAL: MOOD PI: MORIMOTO (K23 MH 095830)

MIXED EFFECTS MODEL: NeuroFlex VS. CONTROL

*Morimoto et. Al Am. J. of Geri Psych. 2020
RCT: COGNITIVE CONTROL DEFICITS PI: MORIMOTO (K23 MH 095830)

t(28)=9.5; p=.006*

*Morimoto et. Al Am. J. of Geri Psych. 2020

TARGET COGNITIVE FUNCTIONS AND TRANSFER: escitalopram

Week 4

CHANGE IN STROOP

NeuroFlex

CHANGE IN TRAILS B - TRAILS A

Baseline

CHANGE IN WORKING MEMORY

*Morimoto, Gunning et al., AJGP 2020

STROOP: †(26)-3.00; p=.007*; TRAILS: †(28)2.97; p=.007* FAS: t(28)2.38; p=.03* DIGITS B: t(26)2.59;p=.02*

42

40

38

36

34

32

30

CHANGE IN LONG DELAY MEMORY

t(28)=2.84; p=.03*

*Morimoto, Gunning et al.,AJGP 2020

NEUROFLEX IMPROVES FUNCTIONING (VS. CONTROL)

ANHEDONIA: †(28)2.63;p=.014*

APATHY: †(28)1.89;p=.07*

DISABILITY: †(28)2.45;p=.021*

escitalopram

NeuroFlex

Baseline

*Morimoto, Gunning et al., AJGP 2020

CHANGE IN AES

NEUROFLEX EFFECT SIZES

	Baseline	Week4	statistic	pvalue	d
MADRS			F(1,61.8)=11.37	.002*	64
Neuroflex	25.7(8.9)	13.2(5.9)			
Control	25.6(8.2)	18.9(8.0)			
WHODAS			t(28)2.98	.006*	-1.17
Neuroflex	23.87(9.4)	18.8(5.4)			
Control	25.9(9.0)	27.3(8.1)			
StroopCW			†(26)-2.97	.007*	-1.21
Neuroflex	34.4(9.3)	36.4(8.7)			
Control	33.4(9.4)	34.0(9.5)			
TrailsB			†(28)2.2	.04*	86
Neuroflex	157.6(101.2)	140.9(102.4)			
Control	150.6(96.2)	158.0(80.2)			
DigitSpan			†(26)2.56	.02*	-1.08
Neuroflex	6.1(2.2)	7.0(2.4)			
Control	6.9(2.2)	6.9(1.7)			
SemanticClus. (StandardScore)	SS	SS	t(26)=-3.12	.006*	1.39
Neuroflex	.56(1.7)	.96(1.5)			
Control	.2(0.9)	-1.0(.85)			
VerbalMemory			†(24)=2.84	.03*	97
Neuroflex	8.1(3.8)	9.6(4.9)			
Control	7.8(4.5)	6.6(3.8)			
DesignFluency Switch			†(28)=1.16	.26	**
Neuroflex	5.8(2.6)	6.2(1.3)			
Control	5.9(1.9)	6.0(1.6))			
FAS			†(28)=2.27	.03*	99
Neuroflex	34.8(17.2)	41.9(16.4)			
Control	40.3(16.7)	41.0(16.3)			

R01 MH126051 – MULTI-SITE CONFIRMATORY EFFICACY RCT

- \$7.5 M Budget
- **5 YR ITERATIVE EFFICACY TRIAL**
- SECOND SITE U of Connecticut
- 250 Treatment Resistant Depressed
- FULL REMOTE Capability
- Pts on a stable dose or OFF SSRI/SNRI

COLLABORATORS AND FUNDING

MORIMOTO NEUROTHERAPEUTICS LAB

- Sarah E Cote, M.S.
- Annalisa Adams, M.A.
- Bruno Porras-Garcia, Ph.D.
- Tina Hyunn

MEDICAL SCHOOL OF SOUTHEAST UNIVERSITY, NANJING

Jiachang Liu, M.D., Ph.D.

FUNDING

R01 MH126051 (Morimoto) K 23 MH 095830 (Morimoto) UL1TR000457 (Morimoto) Wheeler Foundation (Morimoto) UU Development Council (Morimoto) R01 MH065653 (Alexopoulos) P30 MH68638 (Alexopoulos) T32 MH19132 (Alexopoulos)

UNIVERSITY OF UTAH, GApp LAB

- Roger A. Altizer, Ph.D.
- Greg Bayles, M.S.
- Utkarsh Agrawal, B.S.
- Dickens Chong, B.S.
- Shantanu Pandi, B.S.

UNIVERSITY OF UTAH, NURSING

Deborah Morgan, APRN Ph.D.

WEILL CORNELL MEDICAL COLLEGE

- George S. Alexopoulos, M.D.
- Faith M. Gunning, Ph.D.
- Glen Prusky, Ph.D. •
- Willie Hu, B.S.E, M.D.
- Juliana Nitis, M.D. •

HOW DO YOU GET TO CARNEGIE HALL? **PRACTICE, PRACTICE, PRACTICE!**

KEVIN DUFF, PH.D.

CENTER FOR ALZHEIMER'S CARE, IMAGING AND RESEARCH (CACIR) **DEPARTMENT OF NEUROLOGY, UNIVERSITY OF UTAH**

- Practice effects are improvements in cognitive test scores due to repeated exposure to the same/similar test materials
- Largely considered error

HVLT-R Total Recall in healthy elders

Practice effects are reduced in impaired samples

Duff et al. (2011)

Practice effects predict disease pathology

Little amyloid deposition High practice effects

High amyloid deposition Low practice effects

Odds ratio of having a positive amyloid scan was **<u>13.7 times higher</u>** if the individual had low practice effects compared to high practice effects

Duff et al. (2014)

PE = BIOMARKER IN PRECLINICAL DEMENTIA

PE = COGNITIVE RESILIENCE

Cognitive Function & ADRD Risk in the Context of Early Life Wartime Stress Exposures

Kim Korinek, Department of Sociology & The Asia Center, University of Utah Presentation for Center on Aging Retreat, May 25, 2022

Vietnam Health & Aging Study, 2018 (www.vhas.utah.edu)

- In-person interview & biomarker data collection (N=2,447, age 60+) in northern Viet Nam
 - 'American War' cohort teens/young adults in 1965-75
 - Multi-stage probability sampling; purposive selection of 4 districts

 → differential exposure to bombing, wartime stress
 - Wave I (Summer 2018) & Wave II (Summer 2021, 2022); ~12% attrition due to mortality, loss to follow-up
- Omnibus survey; early life & wartime stressors, selfreports of health status, cognitive performance tests (MMSE, CSI-D)
- Biomarker collection (venous blood, hair, anthropometrics) in full sample to assess disease risk; physiological & cognitive aging

The "long arm of war" and cognitive health in low- and middle-income countries (LMICS)

- Alzheimer's Disease (AD) & other neuro disorders, are a global epidemic & substantial share of disease burden in LMICs
- Research on AD's experiential & environmental correlates in LMICs is sparse
- Armed conflict: "environment" of "extreme, violent nature" with clusters of stressors that may accelerate aging¹
- Benign & adverse life course exposures (e.g., death in family) affect AD risk, in part via "cognitive reserve"^{2,3,4}
- Stressed nutritional environments in conflict-affected LMICs underlie deficiencies/illnesses that heighten ADRD⁵

Figure 1. MMSE Cognitive Score by Respondent Age, VHAS 2018

COGNITIVE SCORE

aw dawddaied wikelie od die ring uwaig Wike rekenellere stolbod im givig Greefe aftide instrukter ith ivawanto Yes, at least 1

COG SCORE

Table 1. Survey-adjusted Poisson Regression Results: Modified MMSE Cognitive Score, Vietnamese Older Adults 60+

	Model A	Model B
Nutrition/food insecurity covariates	b	b
Experience of Severe Childhood Hunger: Only once (Ref: None reported)	-0.050+	-0.051+
Experience of Severe Childhood Hunger: Multiple occasions (Ref: None reported)	-0.031*	-0.032*
Experienced weakness/illness due to food shortage during war	-0.030+	-0.031+
Weight Status: Presently Underweight (BMI <=18.5) (ref: Normal or overweight)	-0.054*	-0.053*
War-related stressor covariates		
Family member deaths due to war (Count)	-0.009	-0.009
Saw dead or seriously injured civilians during war at least once (Ref: never)	-0.005	-0.007
Saw dead/seriously injured Vietnamese soldiers during war at least once (ref: never)	-0.016	-0.033+
Moved due to bombing during war at least once (ref: never)	0.008	0.008
Experienced fear of being injured or killed during war at least once (ref: never)	-0.023	-0.024
Experienced exposure to agent orange (self-reported) at least once (Ref: never)	0.005	-0.003
Combat covariates		
Engaged in combat patrols during war at least once (ref: Never)		0.042*
Had a friend shot near them in battle at least once (ref: never)		0.009
PTSD covariate		
Recent PTSD symptoms (count)		
Health Status Covariates		
CVD Conditions (Count)		
Elevated AIc level (ref: normal)		
Physical exercise: Infrequently (Less than weekly) (ref: never)		
Physical exercise: Frequently (Daily/almost daily) (ref: never)		
Psychosocial covariates		
Recent stressful life events (count)		
Family-based emotional support index (reverse coded)		
N	2135	2135

+ p<=.10; * p<=.05; ** p<=.01; *** p<=.001

Vietnam Health and Aging Study, NIA ADRD Supplement (2021-22)

Specific Aims:

a) Implement and validate a survey-based cognitive test (Community Screening Instrument for Dementia, CSI-D) to measure cognitive impairment and dementia within a sample of Vietnamese older adults;

b) Develop and test the properties of a modified blood-based biomarker panel for ADRD;

c) While adjusting for established risk factors, analyze associations among early-life war exposures and biological and cognitive performance assessments of ADRD. Focal war exposures include combat and associated forms of violence; environmental adversities including severe food shortage; and contact with Agent Orange.

NIA ADRD Supplement – Proposed Data Collection & Analyses

- **Sample:** Stratified random subsample of VHAS Wave II participants (N=450); strata defined by war-stress exposure severity, gender & military service
- Implement additional cognitive performance test, CSI-D
- Assay blood-based biomarkers for ADRD Risk/Screening
 - -O'Bryant et al. ADRD proteomic biomarker profile^{6,7,8}
 - –Homocysteine & life course malnutrition/helminths^{9,10}

• Analysis plans:

- -Validation/replication of O'Bryant et al proteomic profiles & CSI-D
- -Examine life course stress, malnutrition & disease environment correlates of ADRD risk; longitudinal analysis of cognitive decline in context of early life & recent life event stressors

Acknowledgements

- VHAS is funded by a grant from the National Institutes of Health/National Institute on Aging (R01-AG052537).
- Research Partners:
 - Hanoi Medical University,Viet Nam
 - Mount Saint Vincent University, Halifax, Nova Scotia
 - National University of Singapore
 - Center for Studies in Demography and Ecology, University of Washington.

REFERENCES

- Clarkin, P. F. (2019). The Embodiment of War: Growth, Development, and Armed Conflict. Annual Review of Anthropology, 48, 423-442. 1.
- Stern, Y. (2002). What Is Cognitive Reserve? Theory and Research Application of the Reserve Concept. 8(3), 448–460. https://doi.org/10.7916/D8TQ7D3P 2.
- Norton, M. C., Ostbye, T., Smith, K. R., Munger, R. G., & Tschanz, J. T. (2008). Early parental death and late-life dementia risk: Findings from the Cache County 3. Study. Age and Ageing, 38(3), 340–343. <u>https://doi.org/10.1093/ageing/afp023</u>
- Johansson, L., Guo, X., Waern, M., Östling, S., Gustafson, D., Bengtsson, C., & Skoog, I. (2010). Midlife psychological stress and risk of dementia: a 35-year 4. longitudinal population study. *Brain*, 133(8), 2217-2224.
- 5. Birbeck, G. L., Meyer, A.-C., & Ogunniyi, A. (2015). Nervous system disorders across the life course in resource-limited settings. *Nature*, 527(7578), S167–S171. https://doi.org/10.1038/nature16031
- O'Bryant, S. E., Edwards, M., Johnson, L., Hall, J., Villarreal, A. E., Britton, G. B., Quiceno, M., Cullum, C. M., & Graff-Radford, N. R. (2016). A blood screening test 6. for Alzheimer's disease. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring, 3, 83–90. https://doi.org/10.1016/j.dadm.2016.06.004
- O'Bryant, S. E., Ferman, T. J., Zhang, F., Hall, J., Pedraza, O., Wszolek, Z. K., Como, T., Julovich, D., Mattevada, S., Johnson, L. A., Edwards, M., Hall, J., & Graff-7. Radford, N. R. (2019). A proteomic signature for dementia with Lewy bodies. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring, 11, 270-276. https://doi.org/10.1016/j.dadm.2019.01.006
- Petersen, M. E., Zhang, F., Schupf, N., Krinsky-McHale, S. J., Hall, J., Mapstone, M., Cheema, A., Silverman, W., Lott, I., Rafii, M. S., Handen, B., Klunk, W., Head, E., 8. Christian, B., Foroud, T., Lai, F., Rosas, H. D., Zaman, S., Ances, B. M., ... Syndrome (ABC-DS), the A. B. C.-D. (2020). Proteomic profiles for Alzheimer's disease and mild cognitive impairment among adults with Down syndrome spanning serum and plasma: An Alzheimer's Biomarker Consortium–Down Syndrome (ABC–DS) study. Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring, 12(1), e12039. https://doi.org/10.1002/dad2.12039
- 9. Molero, A. E., Altimari, C. C., Duran, D. A., Garcia, E., Pino-Ramirez, G., & Maestre, G. E. (2006). Total plasma homocysteine values among elderly subjects: Findings from the Maracaibo Aging Study. Clinical Biochemistry, 39(10), 1007–1015. https://doi.org/10.1016/j.clinbiochem.2006.07.005
- 10. Gill, S. S., & Alibhai, S. M. H. (2003). Folate deficiency, homocysteine and dementia. *Geriatrics and Aging*, 6(4), 24–28. Scopus.

KAREN SCHLIEP, PHD MSPH

Assistant Professor Family and Preventive Medicine

Research Interests

https://medicine.utah.edu/dfpm/research/li @schlie fe-course-eni nv

Predicting dementia from health records

Models evaluated with nested cross-validation yielded an AUC of 72% for dementia, 69% sensitivity and 64% specificity.

AUCs higher for AD versus related dementia and using multiple data sources.

Electronic Health Record Data Source						
	All	Medicare	Inpatient	Outpatient		
	Area u	nder the curve ((sensitivity, spec	cificity)		
Dementia	0.72	0.68	0.66	0.66		
	(0.69, 0.64)	(0.64, 0.62)	(0.56, 0.64)	(0.66, 0.59)		
Alzheimer's	0.70	0.69	0.67	0.67		
Disease	(0.62. 0.68)	(0.64, 0.65)	(0.61 <i>,</i> 0.64)	(0.59, 0.64)		
Related	0.61	0.62	0.60	0.53		
Dementia	(0.53, 0.64)	(0.55, 0.59)	(0.41, 0.60)	(0.52, 0.53)		

KEY FEATURES among 2000 evaluated:

Age at baselineVasculaHypertensionFibromyChronic kidney diseaseFatigueHeart failureAnemiaPulmonary diseaseGastroitAtrial fibrillationFatigue

Vascular disease Fibromyalgia, chronic pain Fatigue Anemia Gastrointestinal disorders

Disruption to Transformation: Aging in the "New Normal"

Sex differences in dementia risk

Schliep et al. Biology of Sex Differences (2022) 13:16 https://doi.org/10.1186/s13293-022-00425-3

RESEARCH

Biology of Sex Differences

Open Access

Check for

Overall and sex-specific risk factors for subjective cognitive decline: findings from the 2015–2018 Behavioral Risk Factor Surveillance System Survey

Karen C. Schliep¹⁽¹⁾, William A. Barbeau², Kristine E. Lynch^{3,4}, Michelle K. Sorweid⁵, Michael W. Varner⁶, Norman L. Foster⁷ and Fares Oeadan^{2,8*}

Risk factor	Adj RR ¹ (95% Cl ²)	Prevalence (%)	Communality ³ (%)	Adj PAF ⁴ (%)	Weighted Adj PAF ⁵ (%)
All adults					
Limited education ^a	1.12 (0.99-1.26)	4.78	66.19	0.59	0.20
Deafness ^b	2.01 (1.82-2.19)	9.66	39.81	8.87	2.96
Social isolation ^c	2.46 (2.15-2.77)	52.38	70.97	43.28	14.44
Depression ^d	3.12 (2.95-3.29)	18.76	56.15	28.47	9.50
Smoking ^e	1.20 (1.12-1.27)	15.46	64.26	2.97	0.99
Physical inactivity ^f	1.32 (1.25-1.39)	30.76	39.83	8.92	2.98
Obesity ⁹	1.14 (1.08-1.19)	32.97	59.06	4.32	1.44
Hypertension ^h	1.28 (1.20-1.36)	50.99	57.99	12.57	4.20
Diabetes ⁱ	1.28 (1.21-1.35)	17.76	57.65	4.78	1.59
			Overall ⁶	74.13	38.30
Women					
1 Limited education ^a	1.18 (0.97-1.38)	4.49	58.99	0.79	0.26
Deafness ^b	2.09 (1.79-2.38)	7.46	48.90	7.50	2.44
Social isolation ^c	2.48 (2.07-2.89)	55.70	69.20	45.21	14.72
Depression ^d	3.26 (3.01-3.50)	22.92	57.33	34.08	11.09
Smoking ^e	1.29 (1.18-1.40)	14.41	65.83	4.00	1.30
Physical inactivity ^f	1.32 (1.23-1.42)	32.25	41.35	9.45	3.07
Obesity ^g	1.14 (1.06-1.22)	32.08	64.84	4.37	1.42
Hypertension ^h	1.26 (1.15–1.37)	49.57	58.25	11.33	3.69
Diabetes ⁱ	1.32 (1.22-1.42)	16.73	59.35	5.10	1.66
			Overall ⁶	76.81	39.65
Men					
Limited education ^a	1.05 (0.87-1.24)	5.11	26.67	0.28	0.11
Deafness ^b	1.93 (1.68-2.17)	12.22	20.30	10.16	3.86
Social isolation ^c	2.47 (1.98-2.96)	47.68	71.96	41.20	15.66
Depression ^d	3.23 (2.94-3.51)	13.94	39.75	23.68	9.00
Smoking ^e	1.11 (1.01-1.22)	16.68	50.75	1.86	0.71
Physical inactivity ^f	1.32 (1.22-1.42)	29.03	35.75	8.50	3.23
Obesity ⁹	1.13 (1.04-1.21)	33.93	48.34	4.14	1.58
Hypertension ^h	1.32 (1.20-1.44)	52.63	57.98	14.44	5.49
Diabetes ⁱ	1.24 (1.14-1.34)	18.95	54.94	4.37	1.66
			Overall ⁶	71.68	41.30

Early life Percentage reduction in dementia prevalence if this risk factor is eliminated Less education Hearing loss Fraumatic brain injur Midlife -Ivpertension Alcohol >21 units per week Obesity Social isolation Later life hysical inactivity otentially modifiable 40% **Risk unknown** 60%

Livingston et al, Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020 Aug 8;396(10248):413-446. doi: 10.1016/S0140-6736(20)30367-6. Epub 2020 Jul 30, PMID: 32738937; PMCID: PMC7392084,

Reproductive health and future dementia

Women with, versus without HDP, had a 1.4 fold higher hazard for dementia. >40% of the effect could be explained by midlife hypertension or stroke.

	All- Den	cause nentia	Vascula	r Dementia	Alzh Dis	eimer's sease	Other I	Dementia
		Numb	per of Wo	omen; Adjusto	ed Haza	rd Ratio (95º	% CI)	
HDP	827	1.37 (1.26, 1.50)	55	1.64 (1.19, 2.26)	178	1.04 (0.87, 1.24)	594	1.49 (1.34, 1.65)
No HDP	1596	1.00	97	1.00	410	1.00	1098	1.00

	Direct Effect	Indirect Effect	% Mediated
	Adjusted Hazar	d Ratio (95% CI)	
Myocardial infarction	1.40 (1.37, 1.43)	1.09 (1.06, 1.12)	24%
lschemic heart disease	1.40 (1.37, 1.44)	1.08 (1.06, 1.11)	22%
Heart failure	1.38 (1.35, 1.42)	1.07 (1.03, 1.10)	20%
Stroke	1.27 (1.25, 1.29)	1.20 (1.18, 1.23)	49%
Chronic kidney disease	1.35 (1.32, 1.38)	1.14 (1.11, 1.17)	35%
Hypertension	1.21 (1.19, 1.24)	1.14 (1.12, 1.17)	46%
Anxiety	1.38 (1.35, 1.41)	1.10 (1.08, 1.13)	27%
Depression	1.49 (1.40, 1.57)	1.02 (0.96, 1.08)	6%

Hazard ratio models adjusted for maternal 5-year age groups, year of childbirth (within 1 year), and parity (1, 2, 3, 4, \geq 5) at the time of the index pregnancy.

Disruption to Transformation: Aging in the "New Normal"

Areas for collaboration

@schlie https://medicine.utah.edu/dfpm/research/li fe-course-eni nv

Lifecourse epidemiology leveraging UPDB and nested research studies

Pepper Center

https://medicine.utah.edu/dfpm/research/li @schlie nv fe-course-eni

BENEFIT TO MY RESEARCH?

- **Clinical core:** Potential for retrospective study on reproductive health and cognitive resilience
- Data and biomarker core: Underlying predisposition vs reproductive events themselves cause for dementia. Novel measures of cardiometabolic risk factors and expertise on CVD and dementia outcomes.
- Caregiver core: Ability to support data capture of exposures and outcomes of interest

karen.schliep@utah.edu

@schliepy

https://medicine.utah.edu/dfpm/research/life-courseepi

Thanks!

DEPARTMENT OF RADIOLOGY AND IMAGING SCIENCES

Novel Metrics of Brain Dynamics in Alzheimer's Disease

Jace King, MBA, PhD **Research Assistant Professor Radiology & Imaging Sciences**

RESEARCH INTERESTS

- Brain Network Laboratory
 - Multimodal neuroimaging (MRI, fMRI, DTI)
 - Autism spectrum disorder
 - Brain effects of cannabinoids
 - Alzheimer's disease
- Novel metrics of brain dynamics in Alzheimer's disease
 - Longitudinal analysis of neuroimaging and neuropsychological data

RADIOLOGY AND IMAGING SCIENCES

NOVEL METRICS – SUSTAINED CONNECTIVITY

RADIOLOGY AND IMAGING SCIENCES

SUSTAINED CONNECTIVITY IS ASSOCIATED WITH COGNITIVE DECLINE

RBANS TOTAL SCORE

IDENTIFYING AREAS FOR COLLABORATION

- What I can offer
 - Imaging before/during/after intervention
 - Image analysis
 - Neuropsychological assessment
- What I would benefit from
 - Recruitment (participant registry)
 - Data management
 - Study design/analysis advice

RADIOLOGY AND IMAGING SCIENCES

Human Brain Vascular Imaging and **Quantitative Analysis**

Chun Yuan, Ph.D. **Professor, Radiology and Imaging Sciences** Adjunct Professor, Biomedical Engineering and Biomedical **Informatics**

Vascular Imaging Has Evolved Over Time

Vessel Wall and Atherosclerosis – Quantitative Analysis

- Wall thickness
- AREA
 - LUMEN
 - WALL
 - NECROTIC CORE
 - HEMORRHAGE
 - CALCIFICATIONS
- VOLUME
 - PLAQUE
 - COMPONENTS

2DCASCADE

Kerwin, et al. TMRI, 2007

Quantitative Vascular Map intraCranial artery features extraction (iCafe)

Combined lumen and wall analysis

Distal

Chen L, et al. MRM, 2017

Plaque Changes over Time: Impact of Lipid Depletion **Treatment Atorvastatin (CPC)**

N = 33 subjects on intensive lipid therapy that included atorvastatin (10-80 mg/day)

Zhao et al., JACC Cardiovasc Imaging, 2011;4:977-86 CPC: Carotid Plague Composition by MRI During Lipid-Lowering

Green squares: volume

Cerebral Blood Flow, Vessel Wall, Brain Function

- of

 - tissue level

Opportunity to study mechanisms

Vascular disease progression Flow in large, small artery and

Impact in both brain aging and chronic disease development

Cognitive function (Brain aging/dementia)

- To explore the associations of intracranial artery length measured from TOF-MRA or > SNAP-MRA with global cognitive function
- To compare the associations with cognitive function between different brain blood flow > measuring techniques
 - 29 subjects with carotid atherosclerotic disease
 - Brain MR imaging
 - ✓ 3D TOF
 - **3D SNAP** \checkmark
 - 3D arterial spin labeling (ASL) \checkmark
 - ✓ 3D Phase contrast (PC)
 - 2D FLAIR (for quantifying white matter hyperintensities) \checkmark

Global cognition was assessed using Montreal Cognitive Assessment (MoCA)

Supported by NIH RO1 supplementary

Baseline

Z Chen et al. Sci. Rep. in press, 2022

+ MoCA Test

Baseline result

Multivariable linear regression

iusted R ²	Model 2 ^b				
	ß	P 1	adjusted R^2		
0.497	0.515	0.003	0.477		
0.383	0.443	0.038	0.363		
0.341	0.329	0.097	0.316		
0.377	0.427	0.032	0.372		
0.256					

Table 3: Correlation of carotid morphology and composition with brain lesio								
	Brain Infarct		Brain Infarct					
	Volume (N=33)		Volume (N=33)		Mo			
	(Ipsilateral)		(Whole Brain)					
Variable	*۱	P-value	r* .	P-value	r*			
Mean NWI	0.26	0.048	0.14	0.44	-0.18			
Mean WT	0.23	0.076	0.24	0.18	-0.11			
Max WT	0.31	0.017	0.25	0.16	0.09			
Calcium % volume	-0.14	0.29	-0.24	0.17	-0.36			
LRNC % volume	0.29	0.029	0.34	0.053	-0.07			
IPH % volume	0.25	0.062	0.29	0.10	-0.10			
* Spearman's rank correlation coefficient. NWI: normalized wall index, WT: v								
LRNC: lipid-rich necrotic core JPH: intranlaque hemorrhage. Significant p.v.								

intraplaque hemorrhage. Significant p-values bolded, trending p-values bolded and italicized.

Baseline & Follow-up (1 year)

Summary: Quantitative Vascular MRI Imaging's Role

- **Imaging sequences**
- iCafe
- **CASCADE MOCHA (with new NIH funding)**
- **Quantitative measurements (3D map)**

Can be used to monitor cholesterol lowering treatment

Maybe linked to other brain maps of anatomy,

function, and oxygen consumption

Can be used to study vascular health in different

populations

Acknowledgements

Vascular Imaging Lab
U. of Washington

- NHLBI
- NINDS

Q & A

Thank You

Chun Yuan, Ph.D. Professor, Radiology and Imaging Sciences Adjunct Professor, Biomedical Engineering and Biomedical Informatics